S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage.
نویسندگان
چکیده
During the postnatal development, astrocytic cells in the neocortex progressively lose their neural stem cell (NSC) potential, whereas this peculiar attribute is preserved in the adult subventricular zone (SVZ). To understand this fundamental difference, many reports suggest that adult subventricular GFAP-expressing cells might be maintained in immature developmental stage. Here, we show that S100B, a marker of glial cells, is absent from GFAP-expressing cells of the SVZ and that its onset of expression characterizes a terminal maturation stage of cortical astrocytic cells. Nevertheless, when cultured in vitro, SVZ astrocytic cells developed as S100B expressing cells, as do cortical astrocytic cells, suggesting that SVZ microenvironment represses S100B expression. Using transgenic s100b-EGFP cells, we then demonstrated that S100B expression coincides with the loss of neurosphere forming abilities of GFAP expressing cells. By doing grafting experiments with cells derived from beta-actin-GFP mice, we next found that S100B expression in astrocytic cells is repressed in the SVZ, but not in the striatal parenchyma. Furthermore, we showed that treatment with epidermal growth factor represses S100B expression in GFAP-expressing cells in vitro as well as in vivo. Altogether, our results indicate that the S100B expression defines a late developmental stage after which GFAP-expressing cells lose their NSC potential and suggest that S100B expression is repressed by adult SVZ microenvironment.
منابع مشابه
Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملIsolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells
Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...
متن کاملDifferentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells
Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...
متن کاملExpression pattern of neurotrophins and their receptors during neuronal differentiation of adipose-derived stem cells in simulated microgravity condition
Objective(s): Studies have confirmed that microgravity, as a mechanical factor, influences both differentiation and function of mesenchymal stem cells. Here we investigated the effects of simulated microgravity on neural differentiation of human adipose-derived stem cells (ADSCs). Materials and Methods:We have used a fast rotating clinostat (clinorotation) to simulate microgravity condition. R...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glia
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2007